Quantitative Understanding Of Biosystems Book PDF, EPUB Download & Read Online Free

Quantitative Understanding of Biosystems
Author: Thomas M. Nordlund
Publisher: CRC Press
ISBN: 1420089730
Pages: 588
Year: 2011-06-30
View: 1113
Read: 634
Quantitative Understanding of Biosystems: An Introduction to Biophysics focuses on the behavior and properties of microscopic structures that underlie living systems. It clearly describes the biological physics of macromolecules, subcellular structures, and whole cells, including interactions with light. Providing broad coverage of physics, chemistry, biology, and mathematics, this color text features: Mathematical and computational tools—graphing, calculus, simple differential equations, diagrammatic analysis, and visualization tools Randomness, variation, statistical mechanics, distributions, and spectra The biological micro- and nanoworld—structures, processes, and the physical laws Quantum effects—photosynthesis, UV damage, electron and energy transfer, and spectroscopic characterization of biological structures Through its active learning approach, the text encourages practical comprehension of the behavior of biosystems, rather than knowledge of the latest research. The author includes graph- and diagram-centered physics and mathematics, simple software, frequent checks of understanding, and a repetition of important ideas at higher levels or from different points of view. After completing this book, students will gain significant computational and project experience and become competent at quantitatively characterizing biosystems. CD-ROM Resource The accompanying CD contains multimedia learning tools, such as video clips and animations, that illustrate intrinsically dynamic processes. For students inexperienced in the application of mathematics and physical principles to naturally occurring phenomena, this multimedia component emphasizes what is most obvious about biological systems: living things move. Students can also manipulate and re-program the included Excel graphs.
Advanced Quantitative Microbiology for Foods and Biosystems
Author: Micha Peleg
Publisher: CRC Press
ISBN: 1420005375
Pages: 456
Year: 2006-04-12
View: 934
Read: 530
Presenting a novel view of the quantitative modeling of microbial growth and inactivation patterns in food, water, and biosystems, Advanced Quantitative Microbiology for Foods and Biosystems: Models for Predicting Growth and Inactivation describes new models for estimating microbial growth and survival. The author covers traditional and alternative models, thermal and non-thermal preservation, water disinfection, microbial dose response curves, interpretation of irregular count records, and how to estimate the frequencies of future outbursts. He focuses primarily on the mathematical forms of the proposed alternative models and on the rationale for their introduction as substitutes to those currently in use. The book provides examples of how some of the methods can be implemented to follow or predict microbial growth and inactivation patterns, in real time, with free programs posted on the web, written in MS ExcelÒ, and examples of how microbial survival parameters can be derived directly from non-isothermal inactivation data and then used to predict the efficacy of other non-isothermal heat treatments. Featuring numerous illustrations, equations, tables, and figures, the book elucidates a new approach that resolves several outstanding issues in microbial modeling and eliminates inconsistencies often found in current methods.
Biomolecular Thermodynamics
Author: Douglas Barrick
Publisher: CRC Press
ISBN: 131536302X
Pages: 524
Year: 2017-09-11
View: 166
Read: 1009
"an impressive text that addresses a glaring gap in the teaching of physical chemistry, being specifically focused on biologically-relevant systems along with a practical focus.... the ample problems and tutorials throughout are much appreciated." –Tobin R. Sosnick, Professor and Chair of Biochemistry and Molecular Biology, University of Chicago "Presents both the concepts and equations associated with statistical thermodynamics in a unique way that is at visual, intuitive, and rigorous. This approach will greatly benefit students at all levels." –Vijay S. Pande, Henry Dreyfus Professor of Chemistry, Stanford University "a masterful?tour de force.... Barrick's rigor and scholarship come through in every chapter." –Rohit V. Pappu, Edwin H. Murty Professor of Engineering, Washington University in St. Louis This book provides a comprehensive, contemporary introduction to developing a quantitative understanding of how biological macromolecules behave using classical and statistical thermodynamics. The author focuses on practical skills needed to apply the underlying equations in real life examples. The text develops mechanistic models, showing how they connect to thermodynamic observables, presenting simulations of thermodynamic behavior, and analyzing experimental data. The reader is presented with plenty of exercises and problems to facilitate hands-on learning through mathematical simulation. Douglas E. Barrick is a professor in the Department of Biophysics at Johns Hopkins University. He earned his Ph.D. in biochemistry from Stanford University, and a Ph.D. in biophysics and structural biology from the University of Oregon.
Nanofabrication and Biosystems
Author: Harvey C. Hoch, Lynn W. Jelinski, Harold G. Craighead
Publisher: Cambridge University Press
ISBN: 0521462649
Pages: 423
Year: 1996-07-13
View: 323
Read: 475
This book discusses nano- and microfabrication, and how biologists are using such fabricated devices in their research. The goal of the book is to inform materials scientists and engineers about the needs of biologists, and equally, to inform biologists about how nano- and micro-scale fabrication may help to shed light on their own particular research problems. The book also aims to stimulate innovative, productive interactions between materials scientists, engineers, and biologists; and, to explore ways that materials scientists and engineers can exploit biological principles and biological assemblies to produce new and ever-smaller devices. In addition to serving as a resource for scientists in the field, the book is also intended for any biologist or physical scientist who wishes to understand the current state-of-the-art, and what research is currently being done using biological nanofabrication.
The Physics of Living Systems
Author: Fabrizio Cleri
Publisher: Springer
ISBN: 3319306472
Pages: 620
Year: 2016-10-08
View: 878
Read: 591
In this book, physics in its many aspects (thermodynamics, mechanics, electricity, fluid dynamics) is the guiding light on a fascinating journey through biological systems, providing ideas, examples and stimulating reflections for undergraduate physics, chemistry and life-science students, as well as for anyone interested in the frontiers between physics and biology. Rather than introducing a lot of new information, it encourages young students to use their recently acquired knowledge to start seeing the physics behind the biology. As an undergraduate textbook in introductory biophysics, it includes the necessary background and tools, including exercises and appendices, to form a progressive course. In this case, the chapters can be used in the order proposed, possibly split between two semesters. The book is also an absorbing read for researchers in the life sciences who wish to refresh or go deeper into the physics concepts gleaned in their early years of scientific training. Less physics-oriented readers might want to skip the first chapter, as well as all the "gray boxes" containing the more formal developments, and create their own á-la-carte menu of chapters.
Introduction to Experimental Biophysics, Second Edition
Author: Jay L. Nadeau
Publisher: CRC Press
ISBN: 1351000926
Pages: 764
Year: 2017-10-10
View: 810
Read: 1294
Praise for the First Edition “essential reading for any physical scientist who is interested in performing biological research.” ?Contemporary Physics "an ambitious text.... Each chapter contains protocols and the conceptual reasoning behind them, which is often useful to physicists performing biological experiments for the first time." –Physics Today This fully updated and expanded text is the best starting point for any student or researcher in the physical sciences to gain firm grounding in the techniques employed in molecular biophysics and quantitative biology. It includes brand new chapters on gene expression techniques, advanced techniques in biological light microscopy (super-resolution, two-photon, and fluorescence lifetime imaging), holography, and gold nanoparticles used in medicine. The author shares invaluable practical tips and insider’s knowledge to simplify potentially confusing techniques. The reader is guided through easy-to-follow examples carried out from start to finish with practical tips and insider’s knowledge. The emphasis is on building comfort with getting hands "wet" with basic methods and finally understanding when and how to apply or adapt them to address different questions. Jay L. Nadeau is a scientific researcher and head of the Biomedical Engineering in Advanced Applications of Quantum, Oscillatory, and Nanotechnological Systems (BEAAQONS) lab at Caltech and was previously associate professor of biomedical engineering and physics at McGill University.
Light Harvesting in Photosynthesis
Author: Roberta Croce, Rienk van Grondelle, Herbert van Amerongen, Ivo van Stokkum
Publisher: CRC Press
ISBN: 1351242873
Pages: 611
Year: 2018-01-12
View: 593
Read: 601
This landmark collective work introduces the physical, chemical, and biological principles underlying photosynthesis: light absorption, excitation energy transfer, and charge separation. It begins with an introduction to properties of various pigments, and the pigment proteins in plant, algae, and bacterial systems. It addresses the underlying physics of light harvesting and key spectroscopic methods, including data analysis. It discusses assembly of the natural system, its energy transfer properties, and regulatory mechanisms. It also addresses light-harvesting in artificial systems and the impact of photosynthesis on our environment. The chapter authors are amongst the field’s world recognized experts. Chapters are divided into five main parts, the first focused on pigments, their properties and biosynthesis, and the second section looking at photosynthetic proteins, including light harvesting in higher plants, algae, cyanobacteria, and green bacteria. The third part turns to energy transfer and electron transport, discussing modeling approaches, quantum aspects, photoinduced electron transfer, and redox potential modulation, followed by a section on experimental spectroscopy in light harvesting research. The concluding final section includes chapters on artificial photosynthesis, with topics such as use of cyanobacteria and algae for sustainable energy production. Robert Croce is Head of the Biophysics Group and full professor in biophysics of photosynthesis/energy at Vrije Universiteit, Amsterdam. Rienk van Grondelle is full professor at Vrije Universiteit, Amsterdam. Herbert van Amerongen is full professor of biophysics in the Department of Agrotechnology and Food Sciences at Wageningen University, where he is also director of the MicroSpectroscopy Research Facility. Ivo van Stokkum is associate professor in the Department of Physics and Astronomy, Faculty of Sciences, at Vrije Universiteit, Amsterdam.
Bioprocess Engineering
Author: Shijie Liu
Publisher: Elsevier
ISBN: 0444637931
Pages: 1172
Year: 2016-08-29
View: 765
Read: 1035
Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design, Second Edition, provides a comprehensive resource on bioprocess kinetics, bioprocess systems, sustainability, and reaction engineering. Author Dr. Shijie Liu reviews the relevant fundamentals of chemical kinetics, batch and continuous reactors, biochemistry, microbiology, molecular biology, reaction engineering, and bioprocess systems engineering, also introducing key principles that enable bioprocess engineers to engage in analysis, optimization, and design with consistent control over biological and chemical transformations. The quantitative treatment of bioprocesses is the central theme in this book, with more advanced techniques and applications being covered in depth. This updated edition reflects advances that are transforming the field, ranging from genetic sequencing, to new techniques for producing proteins from recombinant DNA, and from green chemistry, to process stability and sustainability. The book introduces techniques with broad applications, including the conversion of renewable biomass, the production of chemicals, materials, pharmaceuticals, biologics, and commodities, medical applications, such as tissue engineering and gene therapy, and solving critical environmental problems. Includes the mechanistic description of biotransformations and chemical transformations Provides quantitative descriptions of bioprocesses Contains extensive illustrative drawings, which make the understanding of the subject easy Includes bioprocess kinetics and reactor analysis Contains examples of the various process parameters, their significance, and their specific practical use Incorporates sustainability concepts into the various bioprocesses
An Introduction to Systems Biology
Author: Uri Alon
Publisher: CRC Press
ISBN: 1584886420
Pages: 320
Year: 2006-07-07
View: 394
Read: 523
Thorough and accessible, this book presents the design principles of biological systems, and highlights the recurring circuit elements that make up biological networks. It provides a simple mathematical framework which can be used to understand and even design biological circuits. The textavoids specialist terms, focusing instead on several well-studied biological systems that concisely demonstrate key principles. An Introduction to Systems Biology: Design Principles of Biological Circuits builds a solid foundation for the intuitive understanding of general principles. It encourages the reader to ask why a system is designed in a particular way and then proceeds to answer with simplified models.
Advanced Quantitative Microbiology for Foods and Biosystems
Author: Micha Peleg
Publisher: CRC Press
ISBN: 1420005375
Pages: 456
Year: 2006-04-12
View: 1038
Read: 732
Presenting a novel view of the quantitative modeling of microbial growth and inactivation patterns in food, water, and biosystems, Advanced Quantitative Microbiology for Foods and Biosystems: Models for Predicting Growth and Inactivation describes new models for estimating microbial growth and survival. The author covers traditional and alternative models, thermal and non-thermal preservation, water disinfection, microbial dose response curves, interpretation of irregular count records, and how to estimate the frequencies of future outbursts. He focuses primarily on the mathematical forms of the proposed alternative models and on the rationale for their introduction as substitutes to those currently in use. The book provides examples of how some of the methods can be implemented to follow or predict microbial growth and inactivation patterns, in real time, with free programs posted on the web, written in MS ExcelÒ, and examples of how microbial survival parameters can be derived directly from non-isothermal inactivation data and then used to predict the efficacy of other non-isothermal heat treatments. Featuring numerous illustrations, equations, tables, and figures, the book elucidates a new approach that resolves several outstanding issues in microbial modeling and eliminates inconsistencies often found in current methods.
Biophysics
Author: Mark C. Leake
Publisher: CRC Press
ISBN: 1498702465
Pages: 410
Year: 2016-09-15
View: 1064
Read: 1059
An Up-to-Date Toolbox for Probing Biology Biophysics: Tools and Techniques covers the experimental and theoretical tools and techniques of biophysics. It addresses the purpose, science, and application of all physical science instrumentation and analysis methods used in current research labs. The book first presents the historical background, concepts, and motivation for using a physical science toolbox to understand biology. It then familiarizes students from the physical sciences with essential biological knowledge. The text subsequently focuses on experimental biophysical techniques that primarily detect biological components or measure/control biological forces. The author describes the science and application of key tools used in imaging, detection, general quantitation, and biomolecular interaction studies, which span multiple length and time scales of biological processes both in the test tube and in the living organism. Moving on to theoretical biophysics tools, the book presents computational and analytical mathematical methods for tackling challenging biological questions. It concludes with a discussion of the future of this exciting field. Future innovators will need to be trained in multidisciplinary science to be successful in industry, academia, and government support agencies. Addressing this challenge, this textbook educates future leaders on the development and application of novel physical science approaches to solve complex problems linked to biological questions.
Heat Transfer and Fluid Flow in Biological Processes
Author: Sid Becker, Andrey Kuznetsov
Publisher: Academic Press
ISBN: 0124079008
Pages: 428
Year: 2014-12-31
View: 677
Read: 686
Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid flow and heat transfer in biomedical technology Covers topics such as electrokinetic transport, electroporation of cells and tissue dialysis, inert solute transport (insulin), thermal ablation of cancerous tissue, respiratory therapies, and associated medical technologies Reviews the most recent advances in modeling techniques
Characterization and Development of Biosystems and Biomaterials
Author: Andreas Öchsner, Lucas F. M. da Silva, Holm Altenbach
Publisher: Springer Science & Business Media
ISBN: 3642314708
Pages: 254
Year: 2012-12-16
View: 867
Read: 1317
This collection of recent activities provides researchers and scientists with the latest trends in characterization and developments of biosystems and biomaterials. Well known experts present their research in materials for drug delivery, dental implants and filling materials, biocompatible membranes, bioactive surface coatings and bio-compatible and eco-sustainable building materials. In The book covers also topics like microorganisms, the human eye, the musculoskeletal system and human body parts.
The Cell as A Machine
Author: Michael Sheetz, Hanry Yu
Publisher: Cambridge University Press
ISBN: 1107052734
Pages: 427
Year: 2018-01-11
View: 460
Read: 661
A systematic and mathematically accessible introductory text explaining cell functions through the engineering principles of robust devices.
Computational Systems Biology
Author: Andres Kriete, Roland Eils
Publisher: Academic Press
ISBN: 0124059384
Pages: 548
Year: 2013-11-26
View: 817
Read: 691
This comprehensively revised second edition of Computational Systems Biology discusses the experimental and theoretical foundations of the function of biological systems at the molecular, cellular or organismal level over temporal and spatial scales, as systems biology advances to provide clinical solutions to complex medical problems. In particular the work focuses on the engineering of biological systems and network modeling. Logical information flow aids understanding of basic building blocks of life through disease phenotypes Evolved principles gives insight into underlying organizational principles of biological organizations, and systems processes, governing functions such as adaptation or response patterns Coverage of technical tools and systems helps researchers to understand and resolve specific systems biology problems using advanced computation Multi-scale modeling on disparate scales aids researchers understanding of dependencies and constraints of spatio-temporal relationships fundamental to biological organization and function.

Recently Visited